FROM YESTERDAY:
Verify that each equation is an identity.
15.
$$\frac{1-\sin^2 x}{\cos x + \cos x \sin x} = \sec x - \tan x$$

$$\frac{1+\sin x}{(1-\sin x)} (1-\sin x)$$

$$\frac{1-\sin x}{(\cos x)(1+\sin x)} = \sec x - \tan x$$

$$\frac{1}{\cos x} = \sec x - \tan x$$

FROM YESTERDAY:

Simplify each expression. Clearly show all steps.

11. $(\frac{\sec^2 x - 1}{\sec x + 1})$ \leftarrow Factor the difference of squares, then cancel like terms (SecXFI)(SecX-I) Secur = Secx - 1

Notes: put on bright yellow paper!

Notes 7.1: Helpful Hints for Identities

*transform side that is more complicated

- *substitute or rewrite using identities
- *multiply by forms of 1 (such as $\frac{\sin x}{\sin x}$)

Notes 7.1: Helpful Hints for Identities

*factor (GCF or difference of squares)

*multiply-use FOIL method for binomials

(middle term)

Notes 7.1: Helpful Hints for Identities

- *get a common denominator and add or subtract
- *convert terms to sinx and cosx
- *<u>CANNOT</u> "square" or "square root" both sides of equation when proving identities

Check #1-8: sinx cosx cscx 2cos²x 2cscx 2cosx 3sinx 1

Verify that each equation is an identity (yes, all of them are identities.)
→Start with the "more complicated" side and rewrite/simplify until it matches the other side that stays "as is."

10.
$$\frac{\sin x + \cos x}{\sin x \cos x} = \sec x + \csc x$$

tunx = tanx v

Verify that each equation is an identity (yes, all of them are identities.)
→Start with the "more complicated" side and rewrite/simplify until it matches the other side that stays "as is."

CLEARLY SHOW ALL STEPS!

12.
$$(\sin x - 1)(\tan x + \sec x) = -\cos x$$